Generating Digital Twins with Multiple Sclerosis Using Probabilistic Neural Networks

Multiple Sclerosis (MS) is a neurodegenerative disorder characterized by a complex set of clinical assessments. We use an unsupervised machine learning model called a Conditional Restricted Boltzmann Machine (CRBM) to learn the relationships between covariates commonly used to characterize subjects and their disease progression in MS clinical trials. A CRBM is capable of generating digital twins, which are simulated subjects having the same baseline data as actual subjects. Digital twins allow for subject-level statistical analyses of disease progression. The CRBM is trained using data from 2395 subjects enrolled in the placebo arms of clinical trials across the three primary subtypes of MS. We discuss how CRBMs are trained and show that digital twins generated by the model are statistically indistinguishable from their actual subject counterparts along a number of measures.


Your Digital Twin - UnlearnAI


Using AI Digital Twins for Drug Testing


Unlearn.AI nabs $12M to build “digital twins” to speed up and improve clinical trials

“Unlearn’s pioneering use of Digital Twins will limit the number of patients that need to go on placebo while also reducing overall trial enrollment time."
Dr. Charles Fisher, CEO of Unlearn AI, discusses creating digital clones by using artificial intelligence for use in clinical drug trials.
A fascinating approach to the problem of how to make clinical trials more efficient, and understand more about what may be possible with more and better patient data.